Plate Tectonics

Introduction

Earth's Layers

- Core
 - > Inner core 800 miles thick; iron & nickel
 - > Outer core 1400 miles thick; iron, nickel & sulfer
- Mantle 1800 miles thick
 - Inner mantle (Mesosphere) hot and strong due to high pressure
 - > Outer mantle (Asthenosphere) hot and semi-fluid
- Crust
 - > Lithosphere (crust and upper mantle)
 - > Oceanic (more dense) and Continental crust (less dense)
 - > 0-62 miles thick

Earth's Layers

Earth's Layers

Plate Tectonics

 The theory that the Earth's surface is made up of many plates that move over the inner mantle due to convection currents.

Plate Tectonics

The Earth's Plates

- 7-8 major plates
- Several smaller plates

Plate Boundaries

- The area where plates come together
- 3 different plate boundaries
 - > Convergent Boundary
 - > Divergent Boundary
 - > Transform Boundary

Convergent Boundary

- Where plates move toward one another
- 2 things can happen
 - > The plates collide
 - > One plate goes beneath the other called a Subduction Zone
- At a subduction zone, the more dense crust goes beneath the less dense crust
 - > Oceanic crust more dense than continental crust
 - > Older crust more dense than younger crust

Convergent Boundary: Oceanic vs Continental Crust

- Volcanoes form on land
- Over time become mountains

Oceanic-continental convergence

Convergent Boundary: Oceanic vs Oceanic Crust

- Volcanoes form under water
- Can become islands and over times island arcs

Oceanic-oceanic convergence

Convergent Boundary: Contenental vs Continental Crust

Collide and form mountains

Continental-continental convergence

Convergent Boundary Examples

- Oceanic vs Continental
 - > Cascade Mountains, Western USA
- Oceanic vs Oceanic
 - > Aleutian Islands, North Pacific Ocean
- Continental vs
 Continental
 - > Himalayan Mountains, South Asia

Divergent Boundary

- Where plates move away from one another
- New crust fills in and creates a rift or ridge
- Over time as the rift grows, a rift valley can form

Copyright © 2005 Pearson Prentice Hall, Inc.

Divergent Boundary Examples

- Oceanic & Oceanic
 - > Mid-Atlantic Ridge, Atlantic Ocean
- Continental & Continental
 - > Great Rift Valley, East Africa

Transform Boundary

- Where plates slide past one another
- Crust is not being made or destroyed
- Earthquakes are common at transform faults

TRANSFORM FAULT BOUNDARY

Transform Boundary Examples

- Oceanic & Oceanic
 - Mid-Atlantic Ridge faults,
 Atlantic Ocean
- Continental & Continental
 - > San Andreas Fault, California

Plate Boundaries

Earth's History

- The Earth is about 4.6 billion years old
- New oceanic crust is always being formed
- The oldest ocean sediment on record is 200 million years old
- Continental crust is much older
- The oldest continent sediment has been aged to 3.8 billion years
- Scientists can use the shape of the land as well as fossils to study plate tectonics

Plate Tectonics and Fossils

• Fossil evidence links continents together

